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This paper discusses the linearized theory of unsteady flow through a two-dimensional 
aperture in a thin plate in the presence of a grazing mean flow on one side of the plate. 
The mean shear layer is modelled by a vortex sheet, and it is predicted that at low 
mean-flow Mach numbers there is a transfer of energy from the mean flow to the 
disturbed motion of the vortex sheet provided (i) the Kutta condition is imposed at 
the leading edge of the aperture, resulting in the unsteady shedding of vorticity from 
the edge, and (ii) the width of the aperture 2s satisfies 4 < % / A  < 1.1, where h is the 
hydrodynamic wavelength of the disturbance on the vortex sheet within the aperture. 
The theory is used to examine the effect of mean shear on the diffraction of sound by 
a perforated screen, and to predict the spontaneous excitation and suppression of self- 
sustained oscillations in a wall-cavity beneath a nominally steady mean flow. In the 
latter caae support for the proposed theory is provided by a favourable comparison of 
theoretical results with experimental data available in the literature. 

1. Introduction 
Sound incident on a rigid body generates vorticity and results in a transfer of energy 

from a compressible mode of fluid motion to one associated with the essentially 
incompressible induced velocity field of the vorticity distribution. This mechanism of 
acoustic attenuation is exploited in engineering practice by the deployment of per- 
forated screens or acoustic liners, wherein unsteady ‘jetting’ of fluid in surface 
apertures leads to an enhanced conversion of energy from the acoustic to the vortical 
mode. Moreover, the experiments of Barthel (1958), Bechert, Michel & Pfizenmaier 
(1977) and Bechert (1979) demonstrate that the presence of a mean flow through a 
perforated screen or liner further increases the possible levels of attenuation, as 
vorticity generated at the edges of the apertures is convected away in the flow into 
regions where it is unable to interact effectively with the sound, and where its energy 
is dissipated as heat. Several idealized model problems have been examined (Howe 
1979a, b, 1980a, b) in order to estimate theoretically the influence of the mean flow in 
such cases. In particular Howe ( 1 9 8 0 ~ )  has discussed the attenuation which occurs 
when sound impinges on a screen which is perforated by a series of parallel, equal and 
equidistant slits in the presence of a uniform tangential mean flow which is the same 
on both sides of the screen. The coupling between the acoustic and vortical fields is 
effected analytically by the application of the Kutta condition at the sharp leading 
edges of the slits (A in figure l),  in the manner of unsteady thin airfoil theory (Ashley & 
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Landahll965,s 13.2), and in appropriate circumstances it is predicted that up to 50 % 
of the incident acoustic energy can be lost during the interaction with the screen. 

The situation may be expected to differ significantly when the magnitude of the 
tangential mean flow velocity is different on opposite sides of the screen. In  the limiting 
case of an ideal fluid, a vortex sheet in the plane of the slits will separate the two mean 
flows. The sheet is unstable, and an incident sound wave will initiate the growth of the 
characteristic Kelvin-Helmholtz instability waves at the leading edges of the slits. 
The subsequent interaction of these waves with the downstream edges will involve the 
generation 04 acoustic disturbances (aerodynamic sound). Since the amplitude of an 
instability wave increases as it propagates across the slit, it is possible that under 
certain conditions the screen will behave as a net source of acoustic energy. 

The general question of the role of shear-layer instabilities in acoustic problems has 
received extensive attention in the literature in connection with edge tones (see e.g. 
Rockwell & Naudascher 1979), and self-sustained resonant oscillations caused by 
grazing flow over a cavity in a wall (Rossiter 1962; Covert 1970; DeMetz & Farabee 
1977; Elder 1978; Tam & Block 1978). Analogous problems arise in the excitation of 
standing acoustic waves in organ pipes and musical instruments such as the flute (cf. 
Fletcher 1979), and in the classical edge tone (Crighton & Innes 1981). 

The theoretical problem of calculating the interaction of sound with a shear layer 
in the presence of rigid boundaries is difficult, and at some stage most theoretical 
models resort to the empirical fitting of adjustable constants. Heller & Bliss (1975) and 
Tam & Block (1978), for example, invoke the existence of an acoustic source in the 
vicinity of the downstream edge, where the disturbed motion of the shear layer is 
particularly intense, Similarly, Elder (1978), Tam & Block (1978) and Fletcher (1979) 
ignore the influence of the downstream edge in calculating the disturbed motion of the 
shear layer, and erroneously assume that the lateral displacement of the layer is equal 
to a linear combination of Kelvin-Helmholtz modes (modified, perhaps, to allow for 
a finite width of the layer) together with a component arising from the net acoustic 
flux through the slit or aperture. 

The validity of the various approximate analyses could possibly be assessed if exact 
solutions were available in certain limiting situations. Mohring ( 1975) has proposed an 
elegant function-theoretic treatment of linearly perturbed vortex sheets in 
incompressible flow in the presence of edges and slit apertures. The predictions of 
this analysis do not appear to be relevant to  real, unsteady aperture flows, however, 
since the displacement of the vortex sheet is required to vary continuously at the 
leading and trailing edges of the aperture, and this apparently prevents an application 
of the Kutta condition a t  the upstream edge. On the linear theory of an ideal fluid, 
a solution in which the Kutta condition is not satisfied does not include a mechanism 
by means of which energy can be transferred between an acoustic and a vortical field. 
The difficulty in  Mohring’s approach and, incidentally, in Covert’s (1970) analysis of 
compressible cavity oscillations, arises from the condition that the displacement of the 
vortex sheet is required to tend continuously to zero at  the trailing (i.e. downstream) 
edge. This is, of course, in conflict with all experimental observations, which reveal 
that conditions at the trailing edge are decidedly discontinuous and nonlinear. 
Nevertheless, it may be argued that a linear theory could still yield a valuable first 
approximation to the real situation provided that it incorporates some type of singular 
behaviour at the trailing edge. It is the purpose of this paper to  propose such a theory. 
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FIGURE I. Schematic illustration of the canonical problem. 

The theory is formulated in Q 2 in terms of a two-dimensional canonical problem of 
unsteady flow through a slit aperture in a thin rigid plate. In  the undisturbed state the 
slit is spanned by a vortex sheet which separates fluid in uniform motion on one side 
of the plate from fluid at rest on the other. Viscosity is neglected, except in so far as it 
is ultimately responsible for the production of vorticity in accordance with an applica- 
tion of the Kutta condition at the leading edge of the slit. It is shown that the displace- 
ment of the vortex sheet must exhibit an inverse square root singularity as the trailing 
edge is approached in order that a transfer cf energy can occur between an imposed 
oscillatory motion (caused, for example, by an incident sound wave) and the mean 
flow. A range < E < 3-49 of the reduced frequency 6 = ws/U (w being the angular 
frequency, s the half-width of the slit, and U the velocity of the uniform mean flow) is 
found within which the disturbed motion can extract energy from the mean flow. The 
transfer is greatest when E = 2-25 when approximately 2 of a wavelength of a vortex- 
sheet instability mode occupies the slit. This remarkable result was first observed 
experimentally by Rossiter (1962) .  

The theoretical results are applied in Q 3 to the problem mentioned above of the 
diffraction of sound by a screen perforated by a series of parallel, equal and equidistant 
slits in the presence of a uniform mean flow on one side of the screen alone. The theory 
predicts significant departures from the case treated by Howe (1980a) in which the 
mean flow is the same on both sides of the screen. In $ 4  the analysis is extended to 
model the problem of self-sustained wall-cavity oscillations. Encouraging support for 
the basis of the present treatment is provided in this case by a favourable comparison 
with published experimental data. 

2. Analysis of unsteady aperture flow 
In  this section a generalized discussion is given of the effect of mean shear on the 

pulsatile flow of an ideal fluid through a sharp-edged slit. Consider the two-dimensional 
problem illustrated in figure 1. A thin rigid plate lies in the plane x, = 0 of a rectangular 
co-ordinate system (xl, x,, x,), with the x, axis directed out of the plane of the paper in 
the figure. There is slit of width 2s which occupies the portion ( lxll < s, - 00 < x, < 00) 

of the plate. In the undisturbed state the fluid in x, < 0 is at rest, whereas in x, > 0 
there is a uniform mean flow at velocity U ( > 0) in the positive direction of the x1 axis. 
The steady motion is bounded by a vortex sheet in the plane of the slit. A uniform time- 
harmonic pressure perturbation poe-iwt (w > 0 )  is applied to the slit in x, > 0 and it is 
required to determine the linearized approximation to the perturbed flow. 
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In  doing this we shall assume (without loss of generality) that the sound speed c and 
the mean fluid density po may be taken to be constant throughout the flow. Further, 
if M = U / c  is the Mach number of the mean flow, and k = w / c  is the acoustic wave- 
number, we shall require that 

M 2  < 1, ks < 1, (2.1) 

so that the width of the slit is small compared with the wavelength of possible acoustic 
disturbances. 

Let Z ( Z , ) ~ - ~ ~ ~  denote the displacement of the vortex sheet from x, = 0. The x2- 
component v+e-iwt of velocity just above the sheet (i.e. a t  x, = + 0), is then given by 

(2.2) 

where here and henceforth the harmonic time-factor is suppressed. Note that the 
representation (2.2) of w+ may be extended to the whole of the upper surface of the 
plate by taking Z = 0 for lxll > s. This is equivalent to assuming that flow separation 
downstream of the slot does not occur. The perturbation potential #+, say, in x2 > 0 
can be expressed in terms of w+ by making use of the Green's function G+(x, yl) which 
satisfies the convected wave equation 

V+ = ( - iw + u a/axl) z, 

in x2 > 0, and the condition 

aG+/ax, = S ( X ,  - yl) on X, = + 0. (2.4) 

The funct.ion G+ is the flow perturbation generated by a line source of unit strength on 
x2 = 0 at x1 = yl, and it is uniquely defined only when conditions at  large distances 
from the slit are specified. In $$3.4 we shall examine situations in which the basic 
configuration of figure 1 is coupled to additional flow-structure systems, and their 
detailed specification will then lead to the required unique form for G+. 

It follows from (2.4) that 

where the integration extends over the upper surface of the plane and slit. In all cases 
to be considered in this paper it will transpire that G+(x, yl) = G+(x, -y1,x2), so that 
aG+/ax, = -aG+/ay,. Hence, using (2.2) in (2.5), integrating by parts and recalling 
that Z(yl) = 0 for IylJ > s, we find in x, > 0: 

J -8 

The perturbation pressure p+ associated with q5+ is given by means of Bernoulli's 
equation in the form 

$)+/Po = - ( - io + a/axl) 9+, (2.7) 

which combines with (2.6) and the applied pressure po  to show that in x2 > 0 the net 
perturbation pressure is just 
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By means of a similar line of reasoning, it follows that in x, < 0 the perturbation 
pressure is given by 

where GJx, yl) satisfies the non-convected form of the wave equation (2.3) in 2, < 0 
(i.e. with M set equal to zero), and represents the potential due to a line source on 
x2 = - 0 at x1 = yl, so that 

aG-/ax, = -6(zl - yl) on x2 = - 0. (2.10) 

The linearized equation governing the motion of the vortex sheet is obtained by 
applying the condition of continuity of pressure across the mean position x2 = 0 of the 
sheet. Thusallowingx, + f Oinrespectivelyequations (2.8), (2.9) wehavefor lxll < s: 

(2.11) * 

Introducing the dimensionless variables 

f = %/a, 7 = YJS, 5 = 2 / 8 9  (2.12) 

and recalling the definition E = us/ U of the reduced frequency given in $1, we may also 
set (2.11) in the form 

where an obvious abreviated notation for the arguments of the Green's functions has 
been adopted. 

In $53, 4 it will be shown that the condition (2.1) permits the Green's functions 
G&r) to be expressed in a common approximate form when 161, 171 < 1, namely: 

(2.14) 

The quantities a+, a- are complex constants, independent off,  4, which depend on the 
coupling of the motion in the slit to the particular flow-structure systems considered 
below in $Q3, 4, where their explicit values will be calculated. Equation (2.13) 
accordingly becomes 

n r  

where q is thejlux defined by 

(2.16) 

Equation (2.15) coristitutes a seconcl-order, linear differential equation which is 
satisfied by the integrated term within the interval 161 < 1 .  The inhomogeneous term 
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on the right-hand side is independent of 5, so that the solution may be written down 
immediately in the form : 

where 

(2.17) 

(2.18) 

C is the particular integral 

C = - $nq(a+ + a-) - rpo/2poe2U2, (2.19) 

and a, pare arbitrary constants. The exponential terms on the right of (2.18) represent 
the general solution of the homogeneous differential equation, and the quantities el, e2 
are the roots X of the auxiliary equation ~ 2 +  ( B  - X ) z  = 0, namely 

E 1 = € ( l + i ) ,  B 2 = E ( 1 - i ) .  (2.20) 

These correspond respectively to exponentially decaying and growing disturbances 
on the vortex sheet (with increasing values of E ) ,  and are, in fact, precisely the eigen- 
values which characterize the Kelvin-Helmholtz instability of an infinitely extended 
vortex sheet in incompressible flow. 

The result (2.17) expresses a weighted distribution of the displacement of the vortex 
sheet as a constant term together with a linear combination of Kelvin-Helmholtz 
modes. This may be contrasted with the treatments of this and related problems due 
to Ronneberger (1972), Elder (1978), Tam & Block (1978) and Fletcher (1979), who 
assume that the displacement itself is equal to a linear combination of interfacial waves. 
These authors neglect the effect of the rigid boundaries on the motion of the sheet. 
Their influence may be understood by noting, for example from (2.6), (2.14) and (2.17), 
that the perturbation potential q5+ just above the vortex sheet (on x2 = + 0) can also be 
represented in terms of a linear combination of Kelvin-Helmholtz modes, and 
similarly for the potential q5-, say, on the lower surface of the sheet. This is because the 
rigid portions of the plate are hydrodynamically equivalent to distributions of surface 
forces-dipoles- which, in an ideal fluid, act in directions normal to the rigid surfaces. 
In consequence there is no contribution to the perturbation potentials at  x2 = & 0 
within the slit, since this lies in a null direction of the surface dipoles. On the other hand, 
equation (2.2) relates the displacement 2 of the vortex sheet to v+ = (aq5+/ax2)z,=o, 
and the value of the latter is determined by the details of the potential at  points in 
x2 > 0, where the contribution from the surface dipoles cannot be ignored. The 
analytical representation of the displacement must accordingly be expected to depend 
on the interaction of the vortex sheet with the plate. 

Equation (2.17) is a singular integral equation for the displacement 6(E), whose 
solution is given, for example, in Carrier, Krook & Pearson (1966, p. 428): 

where ~'(7) = 82/87 and the first integral is a principal value. The values of the 
arbitrary constants a, pin the definition (2.18) of x(E) must be determined by imposing 
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two constraints on the solution (2.21). Since the displacement vanishes on the rigid 
surfaces, the obvious choice is to require that 

(1) { + O  as 6 + + 1 .  (2.22) 

This will yield a solution 6 which varies continuously at both ends of the slit. Experi- 
ments indicate, however, that, although [is generally well behaved at the leading edge 
(6 = - 1) of theslit, on the contrary, the interactionof the vortex sheet with the trailing 
edge (6 = 1) is far from smooth. One can argue that, in order to represent this interaction 
on the basis of linear theory, the displacement should be allowed to retain the singular, 
inverse square root, behaviour accorded by (2.21) as 6 + 1. This will be the case if both 
of the disposable constants a, /3 are fixed by conditions imposed at the leading edge of 
the slit, which we shall take to be 

(11) [ , a [ / : / a E + O  as 6 + - 1 ,  (2.23) 

i.e. that the vortex sheet leaves the upstream edge tangentially in accordance with the 
Kutta condition. A second, and more significant, reason for preferring the Kutta 
condition (11) over case (I) is that case (11) involves the generation of additional 
vorticity at the leading edge in order to  maintain the smooth flow there, and it is only 
by this means that an exchange of energy between the mean and the unsteady slit 
flows can be effected. We shall see below that no transfer of energy occurs in case (I). 

Consider first the Kutta condition case (11). Substitute from (2.18) into (2.21) and 
perform the integrations with the aid of the definition (Gradshteyn & Ryzhik 1965, 
p. 973) of the generating function of the Bessel coefficients Jn(z) to obtain 

a) = n( 1 - - f a ) #  ([C + aJ,(%) + /3J0(€2)l/ln (2) + i%a[EJo(%) + iJl(%)I 

1 co 
+ / B , / ~ [ E J ~ ( E ~ )  + iJl(c2)] - 2ni C in sin 8 sin (n6)  [cte,Jn(sl) + /3ez Jn(sz)] , (2.24) 

n=l  

where 8 = cos-16. 
Condition (2.23) provides two relations for the determination of the coefficients a, /3. 

The constant C in (2.24) depends, however, on the unknown flux q through the defi- 
nition (2.19). A third equation for the determination of q is obtained by integrating 
(2.24) over the slit (161 < 1 )  and using (2.16). Actually it is simpler to start from the 
formal expression (2.21) and to observe that the principal-value integral makes no 
contribution to q. In this way we find 

- 1  , 
= In) (C + a J O ( 4  + /3J&2)). (2.25) 

The relations obtained from the Kutta condition (2.23) are 

q + i%a[Jo(%) - iJl(41 + iS,B[JO(S,) - iJl(%)l = 0, (2.26) 

adJo(%) - 2i%[Jo(%) - ~Jl(%)Il +P~B{JO(EZ) - 2~~2CJO(%) - iJl(%)II = 0, (2.27) 

where use has been made of the recurrence relation 2dn(z )  = z[J,_,(z) + J,+1(2)] 
(Gradshteyn & Ryzhik 1965, p. 967) in obtaining (2.27). 

The system (2.25)-(2.27), together with the clefinition (2.19) of C, determines the 
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FIGURE 2. Variation of the real and imaginary parts of F(a) defined in (2.29) 
aa a function of the reduced frequency B = us/ U. 

parameters a, 8, q in terms of the applied pressure p,. It will be sufficient to quote the 
result for the flux q, which we shall express in the form 

q{F(s) + In (2) - frn(a+ + a-)} = nPo/2P,E2U2, (2.28) 

where the complex-valued function F(s )  is given by 

In problems where there is no externally applied pressure perturbation p,, so that the 
right-hand side of (2.28) vanishes, the zeros s (if any) of the expression in the curly 
brackets on the left of (2.28) represent the natural (unforced) oscillations of the system. 

It will be demonstrated subsequently that there can be a transfer of energy from the 
mean flow to the aperture oscillations only if the imaginary part of F(s)  is negative. The 
dependence of the real and imaginary parts of F ( s )  on real values of the reduced 
frequency E = u s /  U is depicted in figure 2. The following general points may be noted: 

(2.30) 

(ii) F(E)  2: - 2  as B +. co. 

(iii) The principal range in which Im (F) < 0 (cross-hatched in the figure) is 
1.59 c E < 3.49, and Im (F) attains a minimum value of - 0.31 at e 2: 2.30. Although 
I m  (F) does assume negative values for 6 > 3.49, it always exceeds - 0.014, and such 
values will not be significant in the present discussion. These characteristics may also 
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FIGURE 3. Diffraction of sound by a perforated screen in the 
presence of a uniform mean flow in z2 > 0. 

be expressed in the following descriptive manner: Let h = 2m/e denote the hydro- 
dynamic wavelength of the disturbance on the vortex sheet; then, since 1.59 2: in, 
we can say that Im (F) is negative when the width 2s of the slit satisfies 

+A < 2s c 1-lh, (2.31) 

and, moreover, Im (F) assumes its greatest negative value when 2s 21 3A/4. 
Finally, consider the corresponding results for case (I) of (2.22), in which the 

displacement 6 is assumed to vary continuously at both ends of the slit. Proceeding in 
the manner described above, one again obtains a defining equation (2.28) for the flux q, 
except that F ( E )  given above by (2.29) must be replaced by Fz(s), say, where 

(2.32) 

Since equations (2.20) show that the eigenvalues el, E~ are complex conjugates, it follows 
that FI(e) is real for real E and, as we shall see, this implies that there can be no exchange 
of energy between the mean and unsteady components of the flow. 

3. The effect of mean shear on acoustical diffraction by a perforated 
screen 

Our first application of the above analysis is to the diffraction problem illustrated in 
figure 3. A plane sound wave of angular frequency o > 0 is incident from x2 > 0 on a 
thin rigid screen which occupies x2 = 0 and is perforated with parallel, equal and 
equidistant slits each of width 2s and orientated as in $2.  The distance between the 
centre-lines of ndjiwent slits is denoted by (1. As before, there exist,salo\~-~I;tch-niimber 
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mean flow at speed U in the x1 direction in x2 > 0, and no mean flow in x, c 0; the 
sound speed and mean density are taken to be uniform throughout the fluid. 

Let Or be the potential of the incident wave, and assume that the wave propagates 
parallel to the (xl, x,) plane. It therefore satisfies the convected wave equation (2.3), 
and will be taken in the elementary exponential form 

(xl sin e - x2 cos 8) , I i k  
((1 + itt sin e) Qr(x)  = exp 

where k, M are respectively the acoustic wavenumber and mean-flow Mach number 
introduced in 0 2. The angle 8 in (3.1) is the angle between the acoustic wavenormal 
and the x, axis (see figure 3); in general it does not coincide with the direction of 
acoustic energy propagation in the moving medium. The factor (1 + Msin 0) accounts 
for the Doppler shift in the wavelength which occurs with different directions of 
propagation when the frequency o is constant and measured in a frame fixed relative 
to the screen. 

In  addition to (2.1) it  is assumed that kd g 1 (acoustic wavelength large compared 
with the spacing of the slits). It follows, in particular, that at  large distances from the 
screen the diffracted sound reduces to specularly reflected and transmitted waves, 
OR, @,respectively, which are given in terms of reflection and transmission coefficients 

The square root in the argument of the exponential of the transmitted wave is positive 
imaginary when the angle of incidence is negative (incident wave propagating against 
the mean flow) and 

- &r c 8 c - sin-l( 1/( 1 + M)); (3.3) 

in this case 0, decays exponentially as x2 -+ - co. 
Take the origin of co-ordinates in the centre of the slit designated by A,, say, and 

let q be the dimensionless flux through A, defined as in (2.16). The reflection and 
transmission coeficients can be expressed in terms of q in the manner described by 
Howe (1980~)  for the analogous problem involving uniform mean flow on both sides of 
the screen. We find, in fact, 

T = ws2q/d?i2, R = 1 - ws2q/dn2, 

n2 = kcos8/(1 +illsin@, 

E~ = k{( 1 + Msin 8 ) Z -  sinz 0}*/( 1 + M sin 0). J 

where 

‘I 
(3.4) 

(3.5) 

The flux q can be calculated from equation (2.28) when the coefficients a,, a_, which 
define the local forms (2.14) of the Green’s functions C*(x,y,), are known. The latter 
are given by Howe ( 1 9 8 0 ~ ) ~  from which we deduce that 

a, = -i/dn2+n-11n (2?rs/d),\ 

a- = - i/d?lz + n-l In ( 2ns/d) ) 



The influence of mean shear on aperture $ow 136 

provided that the angle of incidence 8 is outside of the range (3.3) of total reflection. 
When (3.3) is satisfied the term - i /d%, in the second of (3.6) is omitted. 

To complete the determination of q from (2 .28)  it remains to specify the pressure p ,  
applied t o  the upper surface of the screen at A,. It is equal to the pressure which obtains 
when the slits are absent, and at small mean-flow Mach numbers and long acoustic 
wavelengths we have, from Bernoulli's equation, 

I - I Z  

p, = 2i0p0(Dz(0). 

(3.11) II' - -+r + l n ( 2 / m ) + F ( e )  
2d n2 n2 

(3.7) 

The factor of 2 in (3.7) arises from the specular reflection, with R = 1, which occurs in 
the absence of slits. 

Substituting from (3.6), (3.7) into equation (2 .28) ,  and using the results (3.4), we 
finally obtain: 

(3.8) 

in which 
u = 2s /d  (3.9) 

is the open area ratio of the screen. When total reflection occurs we take T = 0. 
To interpret these formulae we proceed to examine the acoustic energy balance. 

The mean acoustic power flux in the i-direction is equal to @vi h), where vi is the 
i-component of velocity, p, F, are respectively the density and total enthalpy of the 
fluid, and the angle brackets denote an average over a wave period (Landau & Lifshitz 
1959, 55 6 and 64). In isentropic flow we can take h = Re (iw(De-iwt}. It follows that, if 
ll, is theacoustic power incident on thescreen, and ll, is the total reflected and trans- 

(3.10) 

where l/E2 is omitted at  total reftection. 
Acoustic energy is therefore seen to be conserved provided that P(e) is real. This 

implies that, for the first of the two cases considered in 5 2 (case (I)) in which the 
displacement of the vortex sheet in a slit tends continuously to zero at8 both ends, and 
for which P(E)  is equal to the real-valued function li;(e) defined in (2.32), acoustic 
energy is conserved during diffraction at the screen. In case (11), however, where the 
Kutta condition is applied, and the motion of the vortex sheet is discontinuous and 
singular at the trailing edge, it is seen by reference to figure 2 that the net acoustic 
energy can increase or decrease during the interaction with the screen. Indeed, noting 
that n2 is a positive quantity, it follows from the discussion at the end of 8 2 that the 
acoustic field is attenuated if o s / U  < in, and enhanced if in*< ws/U < 3.49. Energy 
is conserved for higher values of the reduced frequency. 
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Perforated screens in a grazing mean flow have been used to attenuate undesirable 
reverberant sound fields in, for example, the heat exchanger cavity of a nuclear 
reactor. The mean flow Mach numbers involved are always small, and the open area 
ratio u rarely exceeds 0.1. The present theory assumes that kd is small, say less than 
0.5, and this is generally compatible with the practical situation so that, since 
6 = k d r / 2 M ,  it is clear that, except for exceptionally small values of M ,  the reduced 
frequency is likely to be very much less than unity. This places us in the region of 
figure 2 for which acoustic energy is dissipated. 
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( b )  

FIGURE 4. Variation of 12'1, IRI and A (a) with the mean-flow Mach number M in > 0, 
(b )  with the mean flow on both sides of the screen (after Howe 1980~) .  The sound is incident 
normally on the screen, and h-42 = 0.2, Q = 0.05. 

For the remainder of this section we shall confine attention to the Kutta condition 
(case (11)) model of the unsteady motion in the slits. The theoretical predictions will 
be illustrated for a sound wave at normal incidence (0 = 0), for which equations (3.8), 
(3.10) reduce to 

T = l - R = 1  I-- /( " -  
ns/nr = p l a +  IT15 

in which it may be noted that 2 M s / u  = kd. 

(3.12) 
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Figure 4 (a)  presents the dependence of ]TI, IRI on the mean flow Mach number M 
when kd = 0.2 and the open area ratio u = 0.05. Acoustic energy is always dissipated 
in this case unless M is smaller than 0.0032. As the Mach number increases, IT(, IRI 
rapidly assume their respective asymptotic values of zero and unity predicted by 
(3.12) as E +- 0 (cf. the first of equations (2.30)). This behaviour may be contrasted with 
the situation in the absence of flow (first treated by Rayleigh 1897), obtained by 
discarding the dependence on F(E)  in our results, for which IT1 N 0.9871, IRI SI 0.1599. 
Here acoustic energy is conserved, of course, and more than 97 % of the incident 
energy is transmitted by the screen! On the contrary, as the reduced frequency 
us/ U + 0 in the presence of mean shear, all of the incident acoustic energy is reflected. 
For the case illustrated in figure 4(a) ,  e is equal to  0.03, and \TI = 0.0521 when 
M = 0-15, and less than 0-3 % of the energy is transmitted. 

The attenuation experienced by the sound is measured on a decibel scale by means 
of the absorption coefficient A, defined by 

(3.13) 

The dotted curve in figure 4(a) depicts the variation of A with M, from which the 
maximum attenuation is seen to occur at M N 0-027, where A N 1-5 dB. 

These predictions may be compared with the results obtained by Howe (1980~) 
when the mean flow is the same on both sides of the screen, and for which attenuation 
occurs at all frequencies. The corresponding predicted variations of IT!, IRI, A in this 
case are shown in figure 4(b). The moduli ITI, 1RI are seen to vary more slowly with 
increasing M. The maximum value of A is greater, however; as much as 50 yo of the 
incident sound power is absorbed when M N 0.07. In  fact, Howe shows that to a good 
approximation the maximum attenuation at normal incidence is just over 3 dB and 
occurs when 

M 21 Qnc, (3.14) 

In the presence of mean shear the magnitude of the maximum attenuation depends 
critically on the frequency of the sound, and there is no simple relation analogous to 
(3.14). For a given value of kd, however, one can calculate the value of M / u  for which 
A is a maximum, and demonstrate the relative insensitivity of the results to variations 
of the open area ratio in the range 0-01 < 1-7 < 0.05. Figure 5 shows the dependence of 
M / u  and the corresponding optimal attenuation A on values of kd in (0,0.5) for normal 
incidence. In no case does the attenuation attain a value approaching the 3 dB optimum 
for uniform mean flow. 

In figure 6 the dependencies of ITI,IRI, A on the reduced frequency E are illustrated 
fornormal incidence, u = 0.05, and for a constant mean-flow Mach number M = 0.015. 
The theory is of doubtful validity for E > 1.7, for which kd exceeds unity, but the 
results should still be qualitatively correct, and indicate that the acoustic field 
experiences negative damping in the range 41~ < e < 3-49. The additional energy 
acquired by the sound must be extracted from the mean flow, and the enhancement 
peaks at  e = 2-3 N 6n where the modulus of the transmission coefficient exceeds unity 
and when each slit in the screen is occupied by approximately three quarters of a 
hydrodynamic wavelength of the disturbed motion of the vortex sheet. 
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FIGURE 6. Variation of ITI, [ RI, A with the reduced frequency E for normal 
incidence and M = 0.015, d = 0.05. 

4. The excitation of wall-cavity oscillations 
The theory of $ 2  is now applied to model the generation of self-sustained oscillations 

by a nominally steady flow over a cavity in a plane wall. Only the simplified geo- 
metrical configuration illustrated in figure 7 will be discussed, although the analytical 
details are easily modified to deal with more complicated cavity interiors. The cavity 
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consists of a rigid-walled, rectangular parallelepiped whose sides are parallel to the 
co-ordinate axes and respectively of lengths (h,  1,  d ) .  The cavity communicates with a 
uniform external mean flow at speed U in the positive x1 direction through a narrow, 
symmetrically located slit of width 29 and length d which spans the transverse dimen- 
sion of the cavity. The origin of co-ordinates is taken in the centre of the slit, as in $ 2 ,  
and the upper wall of the cavity (in x2 = 0) is assumed to have negligible thickness. 
We shall further suppose that 

2 s < d , h <  1, (4.1) 

1 1 1 1 1 1 1 , I I  

/ 

/ 
/ 
/ 

1 
/ 
/ 
/ 

/ 
I 
/ 
/ 

so that the lower-order acoustic resonances are ‘depth’ modes which have no 
dependence on x1 and x,. 

f J A ~ ~ ~ J f f ~ 1  

- 2 -  / 
/ 
/ 
/ 

/ I  

/ 
/ 
/ 
/ 
/ 

t 1 1 1 1 1 1  I I / / f  

The possibility of unforced oscillations of the system can be deduced from equation 
(2.28) for the flux q through the slit by setting the applied external pressure po equal 
to  zero. The eigenfrequencies will correspond to the zeros w of the term in the curly 
brackets on the left of (2.28).  The amplitude of the oscillations is determined by 
nonlinear aspects of the unsteady flow in the slit, and cannot, therefore, be predicted 
by the present linear theory. 

In  order to make use of (2.28) it is f i s t  necessary to calculate the coefficients a+, a- 
which define the near-field approximations (2.14) to the Green’s functions B,t(x, yl). 
Since the aspect ratio d/29 of the slit is large, we shall neglect end effects and assume 
that in the immediate vicinity of the slit the motion is two-dimensional, in planes 
parallel to the (2, x2) plane. 

Consider first GJx, yl), which characterizes the two-dimensional motion in the 
cavity. For the lower-order resonances the acoustic wavelengths are comparable to 

FIGURE 7. The wall cavity. The cavity and the slit have the same length d in the 
direction normal to the plane of the paper. 
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the vertical dimension 1 of the cavity. In the body of the cavity the motion consists of 
plane compressional modes, and we can write 

(4.2) 

This is a solution of the non-convected wave equation and satisfies aG-/tkc, = 0 at the 
lower end x2 = - 1. The coefficient A is determined from the line source condition (2.10) 
which is to be imposed on the upper wall of the cavity. Since the wavelengths are large 
relative to h, the motion near the upper end will approximate that of an incompressible 
fluid, and when y1 lies within the slit, so that 

a-(x, yl) 2: A cos {k(x2 + I ) } .  

1Y11 < 8 4 h, 

the form of G-(x,y,) can be calculated from the corresponding potential for a line 
source at the origin, i.e. near the upper end of the cavity 

GJx, yl) = B + Re + O(s/h)  ( lyll < s), (4.3) 

where z = x2+ i(zl -yl) and B is constant (Milne-Thomson 1968, $10.5). 

sions (4.2), (4.3) for G- within a common region of validity defined by 
The values of the coefficients A ,  B are obtained by equating these different expres- 

This gives 

so that 

h <  1.21 4 l /k .  

B - n-l In (2) = A cos (kl), 

1 
- = Aksin (kl), 
h 

1 A = l/khsin (kl), 

B = In (2)/n + cot (kl)/kh. J 
Using the second of (4.6) in (4.3), and assuming that x, y1 both lie within the slit 

(2, = -0, lxl-yll < 29 4 h), we find 

B-(s,, 0, yl) 21 cot (kZ)/kh + n-l In I 2n(z1 - yl)/hl. (4.7) 

When this result is expressed in terms of the dimensionless variables 6 ,  
comparison with (2.14), that 

we see, by 

a- = n-l In (2ns/h) + cot (kZ)/kh. (4.8) 

The calculation of G, must take account of the spherical spreading of sound waves 
emitted by the slit, and we therefore start by considering the three-dimensional 
Green’s function 9?+, say, which satisfies 

{( - ik + M a / a ~ ~ ) ~  - (P/~Z? + P/&$ + a2//ax:)} $9+ = 0 (z2 > 0), (4.9) 
with 

a9?+/ax, = S(z, - y1) S(.S - ys) (2, = + 0).  (4.10) 
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When M2 can be neglected relative to unity we have 

(4.11) 

in which x = (z1,x2,z3), y = (yl,y3). This is used to calculate the potential $+ by 
means of 

(4.12) 

The assumption of two-dimensional flow in the slit implies that v+, q5+ are independent 
of the transverseco-ordinatex3. When x lies within the slit, however, $+will, according 
to (4.12), exhibit a weak dependence on x3 which is associated with the effects of the 
ends of the slit. We shall formally remove this by averaging (4.12) over the interval 
-&I < x3 < &I occupied by the slit. This procedure is tantamount to defining the 
value of the two-dimensional Green's function of 5 2 by 

(4.13) 

The relevant acoustic wavelengths are large compared with the transverse dimension 
d,  so that in evaluating this integral for small Ixl-ylI we can make use of the 
approximation 

g + ( ~ , ~ 1 , ~ 3 )  2: - 1/2n I x - Y ~  -ik/2n. (4.14) 

in which case the definition (4.13) yields 

Q+(z,,O,Y,) = ---- ikd (sinh-1 (d/lzl - yl( ) + 2n n (1 - cosh [sinh-l (d/lxl - y,l)])). 

(4.15) 

Now sinh-l(d/lx,-y,() 21 ln(2d/(xl-yll) when zl, gl both lie within the slit. Hence, 
introducing this approximation into (4.15), and comparing the result with (2.14)' we 
finally conclude that 

a+ = n-l In (se/2d) - ikd/2n, (4.16) 

where e = 2.7 1828.. . is the base of the natural logarithm. Note that uncertainties in the 
averaging procedure used above can affect only the real part of a+, and this will be 
seen below to influence the precise values of the resonance frequencies of the cavity, 
but to make no significant modification to predictions regarding the spontaneous 
excitation and suppression of the resonances. 

The expressions (4.8), (4.16) for the coefficients a_, a+ are now substituted into the 
curly brackets of (2.28) and the result equated to zero to give the following equation 
whose roots determine the natural frequencies of the coupled cavity/mean flow 
system 

cot (kl) = 2khn-'{&ln (4M/nes2) + )ikd+F(s)}, (4.17) 

in which, we recall, k = o / c  and s = ws/U.  
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The relevant acoustic wavelengths are, by hypothesis, large compared with the 
dimensions h, d of the cavity, so that, in particular, kh 4 1. Equation (4.17) may there- 
fore be set in the approximate form 

cos{kZ+f(w)} = 0, (4.18) 
where 

f ( w )  = 2khn-1{& In (4M/ne.s2) + aikd + F(E)}  4 1. (4.19) 

A first approximation to the solution of (4.18) is accordingly 

where 
w, = w:-cf(w:)/l  (n = 1,2, ...), 

= (n - a) ncll. 

(4.20) 

(4.21) 

Equation (4.19) shows that f ( w )  is in general a complex-valued function; it follows 
from the harmonic dependence e-i" on the time, that small oscillations of the system 
will decay or grow according as Im (f) 2 0. Hence the spontaneous initiation of 
oscillations of frequency w i  will be possible provided that 

Im(f(wO,)) < 0. (4.22) 

Inspection of (4.19) indicates that there are two physically distinct contributions to 
Im (f): the first is provided by the second term in the curly brackets of (4.19) and 
accounts for energy losses from the oscillating system due to radiation into the ambient 
medium. The second is associated with F(E),  and depends on the interaction of the 
vortex sheet with the slit. Of the two models (cases (I), (11)) discussedin $2,  it has been 
shown that&) assumes complex values only for the Kuttacondition case (11). Thus the 
singular behaviour of the vortex sheet at  the trailing edge of the slit predicted by the 
theory in case (11) appears to be an essential ingredient of a proper modelling of the 
cavity oscillations. 

Before proceeding to a more quantitative discussion we shall introduce a correction 
to (4.20) which arises from the inclusion of dissipation due to viscous and thermal 
effects at  the walls of the cavity. For depth modes this requires the addition to the 
right-hand side of (4.20) of a purely imaginary term which is equal to 

where v, x are respectively the kinematic viscosity and the thermometric conductivity 
of the fluid, and y is the ratio of specific heats (see, for example, Landau 6 Lifshitz 
1959, 5 77). Condition (4.22) for the excitation of oscillations may now be expressed in 
the modified form 

Im { - P(s,)} > an(% - 

where B ,  = wO,s/U. The imaginary part of F ( c )  must benegativeandexceedinmagni- 
tude the sum of the terms on the right of (4.23) which respectively correspond to 
dissipation due to radiation and boundary-layer damping. Recalling the properties of 
F(E)  summarized a t  the end of 5 2 and illustrated in figure 2, we see that self-sustained 
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Right-hand Urnin urn= 
n side of (4.26) (m s-l) (m 81)  

1 0-104 6.36 10.45 
2 0.250 20-99 27.32 

TABLE 1 

oscillations are possible only if 1.59 < w$s/U < 3-49 where Im (P) < 0. This occurs 
for mean-flow velocities U lying in the range 

0 . 2 9 ~ 0 , ~  < U < 0.63~0,~ .  (4.24) 

Of course, the actual interval is smaller than this because Im ( - F )  must exceed the 
terms on the right of (4.23), and if the damping is large enough (specifically, if the right 
of (4.23) exceeds about 0.31), the theory predicts that oscillations are damped out for 
all values of w and U. 

By way of illustration, consider a cavity of depth 1 = 30 cm which has a slit of width 
2s = 2cm, and let d = h = 0.21. In  air we take v = 0.15cm2s-l, x = 0.21 crn2s-l, 
y = 1.4. The inequality (4.23) becomes 

Im{-P(e,)} > 0.157(n-&){l+O.l13/(n-~)~} (n = 1,2,3, ...), (4.25) 

from which we deduce that self-sustained oscillations are possible for n = 1,2 only. 
For n = 3 the right-hand side of (4.25) is equal to 0.40. The approximate range of 
velocities Urnin < U < Umax over which excitation is possible may be obtained by in- 
spection of figure 2, and the results are given in table 1. As the mean-flow velocity 
increases from zero, the first mode sounds at Umi, = 6-36 m s-l. The prediction of 
Urn,, is probably relevant only as an indication of the onset of oscillations as the 
mean velocity is decreasing from higher values. For velocities increasing through Umax 
nonlinear effects are likely to control the precise point at which the mode ceases to 
resonate. Similarly, for velocities decreasing through Umln, the resonance will cease at 
a velocity which is somewhat less than Umln, a phenomenon which is conventionally 
termed hysteresis (Rockwell & Naudascher 1979). The effect of hysteresis is to 
extend the sounding range predicted by linear theory. 

The crudest estimate of the velocity range over which a given mode will sound is 
obtained by neglecting aZE dissipative mechanisms and using (4.24). Such a prediction 
depends only on the modelling of the vortex sheet interaction with the slit, and says 
nothing about the values of the resonant frequencies w,, which may be assumed to be 
defined by experiment. In  figure 8 we reproduce experimental results of DeMetz & 
%arabee (1977) giving the sounding frequency of depth modes in a wall cavity as a 
function of the free-stream velocity U,. The width 2s of the cavity slit was equal to 
1-91 cm. Measurements indicated that, because of the mean-flow boundary layer, the 
phase velocity of vortical disturbances in the slit was approximately equal to #Urn. 
This phase velocity is precisely the mean flow velocity in the ideal, vortex sheet 
modelling of the slit flow described in this paper, and we shall therefore set U = *Urn 
in using the inequality (4.24). Settingf, = wn/2n, (4.24) becomes 

3*64fns < u, < 7*92f,s. (4.26) 
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FIGURE 8. Dependence of the resonance frequency of the DeMetz & Farabee (1977) wall cavity 
on the mean flow velocity. The solid lines represent the velocity ranges predicted by (4.26) in 
which the resonance frequencies jl = 200 Hz and fr = 700 Hz are excited by the flow. 0, 
laminar boundary layer; 0, intermittent transition boundary layer ; , turbulent boundary 
layer. 

Investigator 28lh Remarks 

Rossiter (1962) 0.76 Square well cavity 
DeMetz & Farabee (1977) 0.67 Turbulent boundary layer 

0-33 Laminar boundary layer 
Elder (1978) 0.48-0.76 
Hersh & Walker (1979) 0.62 Circular aperture 

TABLE 3 

Two frequencies were involved in the experiment, namely 200 and 700 Hz, and their 
respective ranges of excitation predicted by (4.26) are given in table 2. These results 
are indicated by the solid lines in figure 8. The extent of the order-of-magnitude agree- 
ment between the predictions of the ideal, linear theory and experiment is remarkable. 

It was pointed out a t  the end of 8 2, (2.31), that I m  ( -  F) > 0 within the interval 
0.5 5 28/h 5 1.1, (where h is the hydrodynamic wavelength of the disturbance in the 
slit), and attains its maximum value at 2s/h N s. The value of this ratio at resonance 
has been measured by several investigators, and their results are collected together in 
table 3 for comparison with the theory. The experiments of Hersh & Walker (1979) 
actually involved a circular aperture, and only a rough order-of-magnitude com- 
parison is possible. To do this the radius of the aperture has been set equal to 8,  and the 
phase velocity of the vortical disturbances is taken to equal one-half of the measured 
free-stream velocity. 
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5. Conclusion 
The h e a r  theory of the interaction of a mean shear layer with a two-dimensional 

aperture reveals that a proper modelling of the flow requires that the Kutta condition 
be imposed at the leading or upstream edge. The displacement of the shear layer is 
then predicted to be weakly singular at the trailing edge, and it has been argued that 
this constitutes the linear-theory analogue of the violent motion which is known from 
experiment to occur there. I f  the Kutta condition is not applied (so that additional 
vortex shedding does not occur) we have shown that, on the basis of linear theory, an 
exchange of energy between the mean and unsteady components of the flow is not 
possible. This is in accord with previous theoretical findings in analogous flow/surface 
interaction problems (Bechert 1979; Howe 1979a, b, 1980a, b), and a simple dynamical 
discussion of the energy exchange mechanism has recently been given by the author 
(Howe 1980~) .  Similarly, the application of the Kutta condition is a crucial element in 
the theoretical explanation of the spontaneous excitation and suppression of wall- 
cavity oscillations. 

Finally, it may be wondered whether the present theory also provides a theoretical 
model of edge-tone generation by a semi-infinite jet. This does not appear to be the 
case. Indeed, it follows easily from the results of Q 4, with the cavity removed and the 
region in x2 < 0 assumed to be filled with stagnant fluid, that 

(5.1) a+ = a- = r l l n  (se/2d) - ikd/2n, 

and that the eigenfrequencies of the edge tone satisfy 

F ( o s / U )  +In (4d/es)+iwd/2c = 0. 

For real o this implies that 

ReF(ws/U)+ln (4dles) = 0, (5.3a) 

ImP(ws/U) + d / 2 c  = 0. (5.3b) 

The second of these requires that Im (F) c 0, i.e. that 1.59 < o s / U  c 3.49, in which 
case (cf. figure 2) 1.2 < -Re (F) < 1.9. This means that ( 5 . 3 ~ )  can be satisfied only for 
aspect ratios d/2s such that 

(5.4) 

In this case eo = ws/U is fixed by (5.3a), which then yields the value of Im F(so) and, 
for given sound speed in (5.3b), the resonant frequency wo = - (2/d)ImF(eo). This 
resonance occurs when the flow velocity U is equal to - (2cs/d) Im {F(so)/e0}. 

The theory accordingly predicts that the edge tone sounds at a single frequency oo 
and a t  a unique value of the mean-flow velocity U .  There is no obvious connection 
between this and experimental observations of the type reported by Rockwell & 
Naudascher (1979) which exhibit a range of frequencies and velocities of operation of 
the edge tone. It is doubtful if the present theory is at all relevant, especially in 
view of the rigid limits placed on the aspect ratio by (5.4). A successful theory of the 
edge tone has been proposed by Crighton & Innes (1981), which predicts the depen- 
dence of the edge-tone frequency on the mean-flow velocity. Their analysis involved 
the formulation and solution of a three-part Wiener-Hopf problem together with an 
application of the Kutta condition at the upstream edge of the aperture, and assumed 
the acoustic wavelength to be much smaller t,han the aperture width 2s. 

1.13 < d / %  < 2.27. 
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